Icosahedral black-and-white Bravais quasilattices and order-disorder transformations of icosahedral quasicrystals

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1990 J. Phys. A: Math. Gen. 23 L1069
(http://iopscience.iop.org/0305-4470/23/20/003)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 09:21

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Icosahedral black-and-white Bravais quasilattices and order-disorder transformations of icosahedral quasicrystals

Komajiro Niizeki
Department of Physics, Tohoku University, Sendai 980, Japan

Received 30 May 1990

Abstract

It is shown that there exist only two black-and-white Bravais quasilattices ($\mathrm{P}_{\mathrm{F}} \overline{5} \overline{3} m$ and $I_{P} \overline{5} \overline{3} m$) with icosahedral point symmetry; the former is related to a division of the primitive icosahedral quasilattice ($\mathrm{P} \overline{\overline{3}} \bar{m}$) into two face-centred ones ($\mathrm{F} \overline{5} \overline{3} m$) and the latter to a division of the body-centred quasilattice ($\overline{5} \overline{3} \mathrm{~m}$) into two primitive ones. It is shown also that an order-disorder transformation of an icosahedral quasicrystal can be a secondorder transition, if the ordering is associated with either of the two sublattice divisions.

The checker lattice (cl) is composed of the black sublattice L and the white one L^{\prime}, both of which are square lattices with the same lattice constant. The point group of L (and L^{\prime}) is $\mathrm{D}_{4}(4 \mathrm{~mm})$. If we disregard the 'colours' of the lattice points, the CL coincides with the third square lattice $L_{0}\left(=L \cup L^{\prime}\right)$, whose lattice constant is $1 / \sqrt{2}$ times that of L. L, L^{\prime} and L_{0} are sets of points in the two-dimensional (2D) Euclidean space E_{2}, into which they are embedded. Alternatively, we can consider these lattices as the sets of 2 D vectors. If the Cartesian coordinate system of E_{2} is so chosen that its origin coincides with a lattice point of L, then L and L_{0} are considered to be additive groups (2D Z-modules) with two generators.

The following are three important properties of the CL.
(i) L is a Bravais lattice and L^{\prime} is its translation; $L^{\prime}=x_{0}+L\left(=\left\{x_{0}+l \mid l \in L\right\}\right)$ with $x_{0}(\in L)$ being a representative of L^{\prime}.
(ii) $2 x_{0} \in L$, so that $L_{0}=L \cup L^{\prime}$ is also a Bravais lattice. That is, L is a subgroup of L_{0} with index $2 ; L+L=L, L+L^{\prime}=L^{\prime}+L=L^{\prime}$ and $L^{\prime}+L^{\prime}=L$.
(iii) L and L_{0} have a common point group G, and L^{\prime}, as well as L and L_{0}, is invariant against G.

The space group g of the $C L$ is the same as that of L. That is, $g=\mathrm{G} * L=\{\{\sigma \mid I\} \mid \sigma \in \mathrm{G}$, $I \in L\}$ with $G=D_{4}$, where the symbol * stands for a semidirect product. In fact, the CL has a larger symmetry than g. Let I_{c} be the colour inversion operation, which inverts black and white. Then, $I_{\mathrm{c}}\{\sigma \mid l\}$ with $\sigma \in \mathrm{G}$ and $I \in L^{\prime}$ is also a symmetry element of the CL . It follows that the CL is invariant against the coloured space group $g_{\mathrm{c}}=g \cup$ $I_{\mathrm{c}}\{\{\sigma \mid l\} \mid \sigma \in G, l \in L\} ; g$ is a subgroup of g_{c} with index 2. The maximal Abelian subgroup of g_{c} is $L_{\mathrm{c}}=L \cup I_{\mathrm{c}} L^{\prime}$, which can be identified with the CL. g_{c} is a semidirect product of L_{c} and $\mathrm{G} ; \mathscr{g}_{\mathrm{c}}=G * L_{\mathrm{c}}$. By these properties, the cL is called a black-and-white Bravais lattice (bwbl) (see, for example, Opechowski and Guccione 1965, Bradley and Cracknell 1972).

If two lattices L and L^{\prime} in any dimensions are given, the set of the conditions (i)-(iii) above are necessary and sufficient conditions for them to give a bwbl, L_{c} ($=L \cup I_{\mathrm{c}} L$). G is called the point group of $L_{\mathrm{c}} . L$ is a superlattice of $L_{0} . L$ and L^{\prime} are
interpenetrated into each other. The roles of L and L^{\prime} can be exchanged if the origin of the Cartesian coordinate system is shifted to the other sublattice. A bwbl is useful in the investigation of an order-disorder transformation or a magnetic transition (Opechowski and Guccione 1965, Tolédano and Tolédano 1987). bwbls in 2D and 3D have been completely classified.

It has been established recently that quasicrystals are new ordered states of matter with non-crystallographic point symmetries (Steinhardt and Ostlund 1987, Janssen 1988); their structures are not periodic but quasiperiodic. The quasilattices are basic geometrical objects which provide us with mathematical bases of the structures of the quasicrystals; a quasilattice is obtained with the cut-and-projection method from a periodic lattice in higher dimensions. Therefore, it is an urgent problem to generalize various concepts in the ordinary crystallography to the case of quasilattices.

In this letter we shall generalize the black-and-white Bravais lattices. A black-andwhite Bravais quasilattice (bWBQL) is defined naturally as 'coloured' quasiperiodic pattern obtained with the cut-and-projection method from a BWBL in higher dimensions. Then, enumerating BWBQLs with a given non-crystallographic point symmetry is reduced to enumerating higher-dimensional bwbls with the same point symmetry \dagger.

We begin with investigating a general method of constructing a d-dimensional bWbL, $L_{\mathrm{c}}=L \cup I_{\mathrm{c}} L^{\prime}$, with a given point group G. Let \boldsymbol{x}_{0} be a representative of the white sublattice L^{\prime}. Then $\rho x_{0} \equiv x_{0} \bmod L \forall \rho \in \mathrm{G}$ because $L^{\prime}=x_{0}+L$ and both L and L^{\prime} are invariant against G. It follows that the point symmetry $G\left(x_{0}\right)$ of x_{0} with respect to the space group $g=G * L$ is isomorphic to G; this is obvious in the case of the checker lattice. A point in E_{d} with a similar property to that of x_{0} shall be called a full symmetry point of L. A lattice point of L is obviously a full symmetry point of L; it is, however, trivial. A point x_{0} satisfying both $G\left(x_{0}\right) \simeq G$ and $x_{0} \notin L$ is called a non-trivial full symmetry point (NTFSP) of L. The present consideration proves the first half of the following theorem:

Theorem. A necessary and sufficient condition for a Bravais lattice L to be a black sublattice of a bWBL is that L has a NTFSP.

We will prove that the condition of the theorem is sufficient. We first recall that G includes the inversion operation $I\left(I x=-x \forall x \in E_{d}\right)$ since L is a Bravais lattice. Let x_{0} be a NTFSP of L. Then, $I x_{0} \equiv x_{0} \bmod L$ and, accordingly, $2 x_{0} \equiv 0 \bmod L$. Moreover, $L^{\prime} \equiv x_{0}+L$ is invariant against $G ; L^{\prime}$ represents a class of NTFSPs which are translationally equivalent to x_{0}. It follows that L and L^{\prime} satisfy the conditions (i)-(iii) for $L_{\mathrm{c}}=L \cup I_{\mathrm{c}} L^{\prime}$ to be a BWBL.

A 2D square lattice (P 4 mm) has only one class of NTFSPs and the corresponding bWBL is the checker lattice. This bwbl is represented as $\mathrm{P}_{\mathrm{P}} 4 \mathrm{~mm}$ (we follow the notation of Opechowski and Guccione 1965). On the other hand, a 2D triangular lattice (P 6 mm) has no NTFSPs and there exist no bWBLs with the hexagonal point symmetry, $G=D_{6}$. More generally, if a d-dimensional Bravais lattice L is given, a bwbl having L as its black sublattice is obtained only when L has an NTFSP. If L has two or more classes of NTFSPs, we can obtain two or more BWBLs.

In this letter, we investigate the case of 6D icosahedral bwbls which yield 3D icosahedral bWBQLs. The relevant point group is $Y_{h}(\overline{5} \overline{3} m)$. There exist three Bravais

[^0]classes of 6 D icosahedral lattices (Janssen 1988), P $\overline{5} \overline{3} m, \mathrm{~F} \overline{5} \overline{3} m$ and $\mathrm{I} \overline{5} \overline{3} m$, whose representatives are chosen to be the 6 D simple hypercubic lattice, L_{P}, the face-centred one, L_{F}, and the body-centred one, L_{I}. The basis vectors ε_{i} of L_{P} satisfy $\varepsilon_{i} \cdot \varepsilon_{j}=a^{2} \delta_{i, j}$. $\boldsymbol{l}=\Sigma_{i} n_{i} \varepsilon_{i} \in L_{P}$ is indexed as $\boldsymbol{l}=\left[n_{1} n_{2} \ldots n_{6}\right]$. The three Bravais lattices are written with this index scheme as $L_{\mathrm{P}}=\left\{\left[n_{1} n_{2} \ldots n_{6}\right] \mid n_{i} \in \boldsymbol{Z}\right\}, L_{\mathrm{F}}=\left\{\left[n_{1} n_{2} \ldots n_{6}\right] \mid n_{i} \in \boldsymbol{Z}, \Sigma n_{i}=\right.$ even $\}$ and $L_{1}=\left\{\left[n_{1} n_{2} \ldots n_{6}\right] / 2 \mid n_{i} \in Z, n_{i}\right.$ are all even or all odd $\}$. The high symmetry points of these lattices have been listed completely (Janssen 1988, Niizeki 1989); of the three Bravais lattices, L_{P} and L_{F} have NTFSPs but L_{1} does not.
L_{F} is a sublattice of $L_{\mathrm{P}}, L_{\mathrm{P}}=L_{\mathrm{F}} \cup L_{\mathrm{F}}^{\prime}$ with $L_{\mathrm{F}}^{\prime}=\varepsilon_{1}+L_{\mathrm{F}} . \varepsilon_{1}\left(=[10000] \equiv x_{0}\right)$ is a NTFSP of L_{F}. Therefore, $L_{\mathrm{F}} \cup I_{\mathrm{c}} L_{\mathrm{F}}^{\prime}$ is a ${ }_{6 \mathrm{D}}$ icosahedral BWBL, which is represented as $\mathrm{P}_{\mathrm{F}} \overline{5} \overline{3} m . L_{\mathrm{F}}$ has two other classes of NTFSPs whose representatives are $x_{1}=[111111] / 2$ and $x_{2}=[\overline{1} 11111] / 2$ and we can obtain another two 6 D icosahedral bwbls. Unfortunately, these two BWBLs belong to the same black-and-white Bravais class as $P_{F} \overline{5} \overline{3} m$. This is because x_{1} and x_{2} are transformed to x_{0} by affine transformations which are automorphisms of L_{F} and preserve the icosahedral point symmetry (Niizeki 1989) \dagger. Thus, L_{F} gives only one bwbl.
L_{1} is divided into two sublattices, $L_{\mathrm{I}}=L_{\mathrm{P}} \cup L_{\mathrm{P}}^{\prime}$ with $L_{\mathrm{P}}^{\prime}=x_{1}+L_{\mathrm{P}}$, where $\boldsymbol{x}_{1}=$ [111111]/2 is a NTFSP of L_{P}. Accordingly, we obtain a new 60 icosahedral bwBL, $\mathrm{I}_{\mathrm{P}} \overline{5} \overline{3} m=L_{\mathrm{P}} \cup I_{\mathrm{c}} L_{\mathrm{P}}^{\prime} . L_{\mathrm{P}}$ has no other classes of NTFSPs.

Let L_{P}^{*} and L_{1}^{*} be the reciprocal lattices of L_{P} and L_{I}, respectively. Then, L_{P}^{*} (or L_{1}^{*}) is a simple (or face-centred) hypercubic lattice in 6 D . The basis vectors ε_{i}^{*} of L_{P}^{*} satisfy $\varepsilon_{i}^{*} \cdot \varepsilon_{j}^{*}=\left(a^{*}\right)^{2} \delta_{i, j}$ with $a^{*}=2 \pi / a . g=\Sigma_{i} n_{i} \varepsilon_{i}^{*} \in L_{\mathrm{P}}^{*}$ is indexed as $g=$ $\left(n_{1} n_{2} \ldots n_{6}\right) . L_{1}^{*}$ is written with this index scheme as $L_{1}^{*}=\left\{\left(n_{1} n_{2} \ldots n_{6}\right) \mid n_{i} \in Z, \Sigma n_{i}=\right.$ even\}.
$\boldsymbol{k}=(111111) / 2$ is an NTFSP of L_{P}^{*}. Let $\boldsymbol{l} \in L_{\mathrm{P}}\left(=L_{\mathrm{F}} \cup L_{\mathrm{F}}^{\prime}\right)$. Then, $\exp (\mathrm{i} \boldsymbol{k} \cdot \boldsymbol{l})$ takes 1 or -1 depending on whether $l \in L_{\mathrm{F}}$ or L_{F}^{\prime}, respectively. Thus, the 6 D plane-wave state $\phi_{\boldsymbol{k}}=\exp (\mathrm{i} \boldsymbol{k} \cdot \boldsymbol{r})\left(\boldsymbol{r} \in E_{6}\right)$ forms a 1 D irreducible representation (IR) of the space group $\mathrm{P} \overline{5} \overline{3} m\left(=\mathrm{Y}_{h} * L_{\mathrm{P}}\right)$. Here, it is essential that k is an NTFSP of $L_{\mathrm{P}}^{*} ; \rho k \equiv k \bmod L_{\mathrm{P}}^{*} \forall \rho \in \mathrm{Y}_{h}$. This IR is closely related to the presence of the bwbl $P_{F} \overline{5} \overline{3} \mathrm{~m}$. Similarly, the plane-wave state ϕ_{q} with $q=(100000)$ being an NTFSP of L_{1}^{*} forms a 1D IR of I $\overline{5} \overline{3} m\left(=\mathrm{Y}_{h} * L_{1}\right)$ and is related to the presence of the bwbl $I_{p} \overline{5} \overline{3} \mathrm{~m}$.

The identity representation Γ_{0} is a 1D IR of the space group $g_{0}\left(=G * L_{0}\right)$ of a Bravais lattice L_{0}. It is, however, a trivial 1D IR because it represents the identity representation of both G and L_{0}. On the other hand, if k is an NTFSP of the reciprocal lattice of L_{0}, it can easily be shown that the 1DIR Γ given by the plane-wave state ϕ_{k} divides L_{0} into two sublattices L and L^{\prime} which form a bwbl $L \cup I_{\mathrm{c}} L^{\prime}$. In this case, the product representation $\Gamma \times \Gamma \times \Gamma$ is identical to Γ. Moreover, the antisymmetrized representation $\left\{\Gamma^{2}\right\}$ does not exist because Γ is one-dimensional. Then, the Landau theory of the phase transformation (Landau and Lifshitz 1968, Tolédano and Tolédano 1987)) tells us that the phase transition which freezes a mode with symmetry Γ will be a second-order transition. The Bravais lattice of the system changes from L_{0} to L on the transition and, accordingly, the unit cell is doubled without changing the point symmetry. Furthermore, the superlattice lines appear at wavevectors in $L^{*}(\boldsymbol{k})=\boldsymbol{k}+L^{*}$.

It follows that a primitive (or a body-centred) icosahedral quasicrystal can transform to a face-centred one (or a primitive one) through a second-order transition. Therefore, the reported order-disorder transformation from the primitive icosahedral

[^1]quasicrystal to the face-centred one is probably a second-order transition (DevaudRzepski et al 1989, Hiraga et al 1989).

In conclusion, there exist only two black-and-white Bravais quasilattices ($P_{F} \overline{5} \overline{3} m$ and $I_{P} \overline{5} \overline{3} m$) with icosahedral point symmetry; the former is related to a division of the primitive icosahedral quasilattice ($\mathrm{P} \overline{5} \overline{3} m$) into two face-centred ones ($\mathrm{F} \overline{5} \overline{3} m$) and the latter to a division of the body-centred quasilattice ($1 \overline{5} \overline{3} m$) into two primitive ones. Moreover, an order-disorder transformation of an icosahedral quasicrystal can be a second-order transformation, if the ordering is associated with either of the two sublattice divisions.

The 2D and 3D BWBQLs with octagonal, decagonal and dodecagonal point symmetries are discussed in Niizeki (1990).

This work is supported by a Grant-in-Aid for Science Research from Ministry of Education, Science and Culture.

References

Bradley C J and Cracknell A P 1972 The Mathematical Theory of Symmetry in Solids (Oxford: Clarendon) Devaud-Rzepski J, Quivy A, Calvayrac Y, Cornier-Quiquandon M and Gratias D 1989 Phil. Mag. B 60 855-69 Hiraga K, Hirabayashi M, Tsai A P, Inoue A and Masumoto T 1989 Phil. Mag. Lett. 60 201-5
Janssen T 1988 Phys. Rep. 168 55-113
Landau L D and Lifshitz E M 1968 Statistical Physics (Oxford: Pergamon)
Niizeki K 1989 J. Phys. A: Math. Gen. 22 4295-302

- 1990 Three-dimensional black-and-white Bravais quasilattices with ($2+1$)-reducible point groups J. Phys. A: Math. Gen. 23 in press

Opechowski W and Guccione R 1965 Magnetism vol IIA, ed G T Rado and H Suhl (New York: Academic) pp 105-65
Steinhardt O J and Ostlund S 1987 The Physics of Quasicrystals (Singapore: World Scientific)
Tolédano J C and Tolédano P 1987 The Landau Theory of Phase Transitions (Singapore: World Scientific)

[^0]: † Strictly speaking, the point group of a BWBL is not identical to that of the relevant BWBQL but is only isomorphic because the dimensions of the spaces onto which they act are different. However, the two point groups are usually identified.

[^1]: \dagger These transformations are related to the self-similarity of the face-centred icosahedral quasilattice obtained from L_{F}.

