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LE’ITER TO THE EDITOR 

Icosahedral black-and-white Bravais quasilattices and 
orderaisorder transformations of icosahedral quasicrystals 

Komajiro Niizeki 
Department of Physics, Tohoku University, Sendai 980, Japan 

Received 30 May 1990 

Abstract. It is shown that there exist only two black-and-white Bravais quasilattices (P$Jm 
and I,3Jm) with icosahedral point symmetry; the former is related to a division of the 
primitive icosahedral quasilattice (PSjm) into two face-centred ones (FTjm) and the latter 
to a division of the body-centred quasilattice (1STm) into two primitive ones. It is shown 
also that an order-disorder transformation of an icosahedral quasicrystal can be a second- 
order transition, if the ordering is associated with either of the two sublattice divisions. 

The checker lattice (CL) is composed of the black sublattice L and the white one L‘, 
both of which are square lattices with the same lattice constant. The point group of L 
(and L’) is D4 (4mm). If we disregard the ‘colours’ of the lattice points, the CL coincides 
with the third square lattice Lo (= L u  L’), whose lattice constant is I /& times that of 
L. L, L’ and Lo are sets of points in the two-dimensional ( 2 ~ )  Euclidean space E * ,  
into which they are embedded. Alternatively, we can consider these lattices as the sets 
of 2~ vectors. If the Cartesian coordinate system of E* is so chosen that its origin 
coincides with a lattice point of L, then L and Lo are considered to be additive groups 
( 2 ~  2-modules) with two generators. 

The following are three important properties of the CL. 

(i) L is a Bravais lattice and L’ is its translation; L’= xo+ L ( ={xo+ 11 1 E L} )  with 
xo ( E L )  being a representative of L‘. 

(ii) 2xo€ L, so that Lo= L u  L’ is also a Bravais lattice. That is, L is a subgroup of 
Lo with index 2; L+ L = L, L+ L’= L‘+ L = L’ and L’+ L’ = L. 

(iii) L and Lo have a common point group G, and L’, as well as L and Lo, is 
invariant against G. 

The space group g of the CL is the same as that of L. That is, g = G *  L = {{all} 1 a E G, 
1 E L}  with G = D4, where the symbol * stands for a semidirect product. In fact, the 
CL has a larger symmetry than g. Let Z, be the colour inversion operation, which inverts 
black and white. Then, Z,{all} with Q E G and 1 E: L’ is also a symmetry element of the 
CL. It follows that the CL is invariant against the coloured space group g c = g u  
Ic { {a l l }  1 U E G ,  1 E L}; g is a subgroup of gc with index 2. The maximal Abelian subgroup 
of g, is L, = L U ZcL’, which can be identified with the CL. g, is a semidirect product 
of L, and G;  9, = G * L,. By these properties, the CL is called a black-and-white Bravais 
lattice (BWBL) (see, for example, Opechowski and Guccione 1965, Bradley and Crack- 
ne11 1972). 

If two lattices L and L’ in any dimensions are given, the set of the conditions 
(i)-(iii) above are necessary and sufficient conditions for them to give a BWBL, L, 
( = L u  Z,L). G is called the point group of L,. L is a superlattice of Lo. L and L’ are 
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interpenetrated into each other. The roles of L and L’ can be exchanged if the origin 
of the Cartesian coordinate system is shifted to the other sublattice. A BWBL is useful 
in the investigation of an order-disorder transformation or a magnetic transition 
(Opechowski and Guccione 1965, TolCdano and TolCdano 1987). BWBLS in 2~ and 3~ 

have been completely classified. 
It has been established recently that quasicrystals are new ordered states of matter 

with non-crystallographic point symmetries (Steinhardt and Ostlund 1987, Janssen 
1988); their structures are not periodic but quasiperiodic. The quasilattices are basic 
geometrical objects which provide us with mathematical bases of the structures of the 
quasicrystals; a quasilattice is obtained with the cut-and-projection method from a 
periodic lattice in higher dimensions. Therefore, it is an urgent problem to generalize 
various concepts in the ordinary crystallography to the case of quasilattices. 

In this letter we shall generalize the black-and-white Bravais lattices. A black-and- 
white Bravais quasilattice ( BWBQL) is defined naturally as ‘coloured’ quasiperiodic 
pattern obtained with the cut-and-projection method from a BWBL in higher dimensions. 
Then, enumerating BWBQLS with a given non-crystallographic point symmetry is reduced 
to enumerating higher-dimensional BWBLS with the same point symmetry?. 

We begin with investigating a general method of constructing a d-dimensional 
BWBL, L, = L u  IcL’, with a given point group G. Let xo be a representative of the white 
sublattice L’. Then pxo = xo mod L Vp E G because L’ = xo + L and both L and L’ are 
invariant against G. It follows that the point symmetry G(xo) of xo with respect to the 
space group 9 = G *  L is isomorphic to G; this is obvious in the case of the checker 
lattice. A point in Ed with a similar property to that of xo shall be called a full symmetry 
point of L. A lattice point of L is obviously a full symmetry point of L; it is, however, 
trivial. A point xo satisfying both G(xo) = G and xoE L is called a non-trivial full 
symmetry point (NTFSP) of L. The present consideration proves the first half of the 
following theorem: 

Theorem. A necessary and sufficient condition for a Bravais lattice L to be a black 
sublattice of a BWBL is that L has a NTFSP. 

We will prove that the condition of the theorem is sufficient. We first recall that G 
includes the inversion operation I ( I x  = -x Vx E E d )  since L is a Bravais lattice. Let 
xo be a NTFSP of L. Then, Ixo 3 xo mod L and, accordingly, 2x0 = 0 mod L. Moreover, 
L‘= xo+ L is invariant against G; L’ represents a class of NTFSPS which are transla- 
tionally equivalent to xo. It follows that L and L’ satisfy the conditions (i)-(iii) for 
L, = L U I,L’ to be a BWBL. 

A 2~ square lattice (P4mm)  has only one class of NTFSPS and the corresponding 
BWBL is the checker lattice. This BWBL is represented as Pp 4mm (we follow the notation 
of Opechowski and Guccione 1965). On the other hand, a 2~ triangular lattice (P  6mm) 
has no NTFSPS and there exist no BWBLS with the hexagonal point symmetry, G = D,. 
More generally, if a d-dimensional Bravais lattice L is given, a BWBL having L as its 
black sublattice is obtained only when L has an NTFSP. If L has two or more classes 
of NTFSPS, we can obtain two or more BWBLS. 

In this letter, we investigate the case of 6~ icosahedral BWBLS which yield 3~ 

icosahedral BWBQLS. The relevant point group is Y h  ( 5 j m ) .  There exist three Bravais 

f Strictly speaking, the point group of a BWBL is not identical to that of the relevant BWBQL but is only 
isomorphic because the dimensions of the spaces onto which they act are different. However, the two point 
groups are usually identified. 
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classes of 6~ icosahedral lattices (Janssen 1988), PSjm, FSjm and ISjm, whose 
representatives are chosen to be the 6~ simple hypercubic lattice, Lp, the face-centred 
one, LF, and the body-centred one, L , .  The basis vectors ei of Lp satisfy e i *  ej = a26i,j. 
1 = X i  niei E Lp is indexed as 1 = [ n 1 n 2 .  . . n6]. The three Bravais lattices are written with 
this index scheme as Lp = {[ n, n2 . . . n6]l ni E Z } ,  LF = {[ n, n2 . . . n6]1 ni E Z, X ni = even} 
and LI = {[nln2. . . n6]/21ni E 2, ni are all even or all odd}. The high symmetry points 
of these lattices have been listed completely (Janssen 1988, Niizeki 1989); of the three 
Bravais lattices, Lp and LF have NTFSPS but LI does not. 

LF is a sublattice of Lp, L P = L F u L :  with L f = & , + L F .  E ,  (=[lOOOO]~x~) is a 
NTFSP of LF. Therefore, LFu 1J.L is a 6~ icosahedral BWBL, which is represented as 
P,Sjm. LF has two other classes of NTFSPS whose representatives are x1 = [ 11 11  11]/2 
and x2 = [ i l l1  11]/2 and we can obtain another two 6~ icosahedral BWBLS. Unfortu- 
nately, these two BWBLS belong to the same black-and-white Bravais class as PFSjm. 
This is because x1 and x2 are transformed to xo by affine transformations which are 
automorphisms of LF and preserve the icosahedral point symmetry (Niizeki 1989)t. 
Thus, LF gives only one BWBL. 

LI is divided into two sublattices, L I =  L p u  Lf ,  with LIp=xl+Lp, where x, = 
[111111]/2 is a NTFSP of Lp. Accordingly, we obtain a new 6~ icosahedral BWBL, 
Ip5jm = L p u  IcLf , .  Lp has no other classes of NTFSPS. 

Let L$ and L: be the reciprocal lattices of Lp and L , ,  respectively. Then, L$ (or 
L?) is a simple (or face-centred) hypercubic lattice in 6 ~ .  The basis vectors E T  of 
L$ satisfy E ?  e: = (a*)2Si,j with a* = 2.rr/a. g = X i  nieF E L$ is indexed as g = 
( n l n 2 . .  . n6). L? is written with this index scheme as L? = { ( n l n 2 . .  . n6) I ni E Z, Z n i  = 
even}. 

k=(111111)/2 is an NTFSP of L$. Let I E  Lp (=L,uL;).  Then, exp(ik.l) takes 1 
or -1 depending on whether 1 E LF or Lf, respectively. Thus, the 6~ plane-wave state 
(bk = exp(ik. r )  ( r  E &) forms a I D  irreducible representation ( I R )  of the space group 
PSjm ( ' Y h  * Lp). Here, it is essential that k is an NTFSP of L$; pk = k mod L$ t l p  E Yh. 
This I R  is closely related to the presence of the BWBL PFJjm. Similarly, the plane-wave 
state (bq with q = (100000) being an NTFSP of L? forms a I D  I R  of ISjm ( =Yh * L , )  and 
is related to the presence of the BWBL IpSjm. 

The identity representation ro is a I D  I R  of the space group go ( = G *  Lo) of a Bravais 
lattice Lo. It is, however, a trivial I D  I R  because it represents the identity representation 
of both G and Lo. On the other hand, if k is an NTFSP of the reciprocal lattice of Lo, 
it can easily be shown that the I D I R  I' given by the plane-wave state (bk divides Lo 
into two sublattices L and L' which form a BWBL L u  IJ.'. In this case, the product 
representation r x r x r is identical to r. Moreover, the antisymmetrized representation 
{r2} does not exist because r is one-dimensional. Then, the Landau theory of the phase 
transformation (Landau and Lifshitz 1968, TolCdano and TolCdano 1987)) tells us that 
the phase transition which freezes a mode with symmetry r will be a second-order 
transition. The Bravais lattice of the system changes from Lo to L on the transition 
and, accordingly, the unit cell is doubled without changing the point symmetry. 
Furthermore, the superlattice lines appear at wavevectors in L*( k) = k + L*. 

It follows that a primitive (or a body-centred) icosahedral quasicrystal can transform 
to a face-centred one (or a primitive one) through a second-order transition. There- 
fore, the reported order-disorder transformation from the primitive icosahedral 

t These transfonnations are related to the self-similarity of the face-centred icosahedral quasilattice obtained 
from L,. 
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quasicrystal to the face-centred one is probably a second-order transition (Devaud- 
Rzepski et a1 1989, Hiraga et a1 1989). 

In conclusion, there exist only two black-and-white Bravais quasilattices ( P,sjm 
and Ip5jm) with icosahedral point symmetry; the former is related to a division of the 
primitive icosahedral quasilattice (P5jm) into two face-centred ones (F5jm)  and the 
latter to a division of the body-centred quasilattice (I%m) into two primitive ones. 
Moreover, an order-disorder transformation of an icosahedral quasicrystal can be a 
second-order transformation, if the ordering is associated with either of the two 
sublattice divisions. 

The 2~ and 3~ BWBQLS with octagonal, decagonal and dodecagonal point symmetries 
are discussed in Niizeki (1990). 

This work is supported by a Grant-in-Aid for Science Research from Ministry of 
Education, Science and Culture. 
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